Forkhead BoxO transcription factors restrain exercise-induced angiogenesis.

نویسندگان

  • Dara Slopack
  • Emilie Roudier
  • Sammy T K Liu
  • Emmanuel Nwadozi
  • Olivier Birot
  • Tara L Haas
چکیده

The physiological process of exercise-induced angiogenesis involves the orchestrated upregulation of angiogenic factors together with repression of angiostatic factors. The Forkhead Box 'O' (FoxO) transcription factors promote an angiostatic environment in pathological contexts. We hypothesized that endothelial FoxO1 and FoxO3a also play an integral role in restricting the angiogenic response to aerobic exercise training. A single exercise bout significantly increased levels of FoxO1 and FoxO3a mRNA (5.5- and 1.7-fold, respectively) and protein (1.7- and 2.2-fold, respectively) within the muscles of mice 2 h post-exercise compared to sedentary. Training abolished the exercise-induced increases in both FoxO1 and FoxO3a mRNA and proteins, and resulted in significantly lower nuclear levels of FoxO1 and FoxO3a protein (0.5- and 0.4-fold, respectively, relative to sedentary). Thrombospondin 1 (THBS1) protein level closely mirrored the expression pattern of FoxO proteins. The 1.7-fold increase in THBS1 protein following acute exercise no longer occurred after 10 days of repeated exercise. Endothelial cell-directed conditional deletion of FoxO1/3a/4 in mice prevented the increase in THBS1 mRNA following a single exercise bout. Mice harbouring the endothelial FoxO deletion also demonstrated a significant 20% increase in capillary to muscle fibre ratio after only 7 days of training while 14 days of training was required to elicit a similar increase in wildtype littermates. Our results demonstrate that the downregulation of FoxO1 and FoxO3a proteins facilitates angiogenesis in response to repeated exercise. In conclusion, FoxO proteins can delay exercise-induced angiogenesis, and thus are critical regulators of the physiological angiogenic response in skeletal muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor Hypoxia Regulates Forkhead Box C1 to Promote Lung Cancer Progression

Forkhead box C1 (FOXC1) is a member of the forkhead family of transcription factors that are characterized by a DNA-binding forkhead domain. Increasing evidence indicates that FOXC1 is involved in tumor progression. However, the role of tumor hypoxia in FOXC1 regulation and its impact on lung cancer progression are unclear. Here, we report that FOXC1 was upregulated in hypoxic areas of lung can...

متن کامل

MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers

Evidence has shown that microRNAs are widely implicated as indispensable components of tumor suppressive and oncogenic pathways in human cancers. Thus, identification of microRNA targets and their relevant pathways will contribute to the development of microRNA-based therapeutics. The forkhead box transcription factors regulate numerous processes including cell cycle progression, metabolism, me...

متن کامل

FOXO1, TGF-β Regulation and Wound Healing

Re-epithelialization is a complex process that involves migration and proliferation of keratinocytes, in addition to the production of cytokines and growth factors that affect other cells. The induction of transcription factors during these processes is crucial for successful wound healing. The transcription factor forkhead boxO-1 (FOXO1) has recently been found to be an important regulator of ...

متن کامل

Vascular remodelling in human skeletal muscle.

Exercise-induced angiogenesis in skeletal muscle involves both non-sprouting and sprouting angiogenesis and results from the integrated responses of multiple systems and stimuli. VEGF-A (vascular endothelial growth factor A) levels are increased in exercised muscle and have been demonstrated to be critical for exercise-induced capillary growth. Only limited information is available regarding th...

متن کامل

The Role of FoxC2 Transcription Factor in Tumor Angiogenesis

Much has been learned about the mechanisms underlying tumor angiogenesis, and therapies that target vascular endothelial growth factor (VEGF) to limit tumor angiogenesis and subsequent disease progression have recently been approved. However, the transcriptional mechanisms that regulate pathological angiogenesis remain largely unknown. FoxC2, a member of the Forkhead box (Fox) transcription fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 592 18  شماره 

صفحات  -

تاریخ انتشار 2014